广义变系数Kadomtsev-Petviashvili方程的变换和多孤子型解
ransformations and Multi-Solitonic Solutions for a Generalized Time-Dependent Variable-Coefficient Kadomtsev-Petviashvili Equation with Computerized Symbolic Computation
变系数Kadomtsev-Petviashvili (KP)方程比它的常系数形式能更好的描述流体力学和等离子体物理等领域中的非线性现象. 本文研究了一个包含非线性项, 色散项和扰动项等时间依赖变系数的广义变系数KP方程. 利用计算机符号计算, 我们给出了从广义变系数KP方程到标准KP方程, 圆柱KP方程以及标准Korteweg-de Vries (KdV)方程和圆柱KdV方程的变换. 而这些变换的条件与方程的Painlevé可积条件是一致的. 利用改进的Hirota双线性方法, 我们得到了广义变系数KP方程的多孤子型解, 自Bäcklund变换以及Lax对. 此外, 我们给出并验证了方程的Wronskian形式的多孤子型解. 最后, 我们讨论了方程中的变系数函数对孤子的动力学机制的影响.
Kadomtsev-Petviashvili equations with variable coefficients can be used to characterize many nonlinear phenomena in fluid dynamics and plasma physics more realistically than the constant-coefficient ones. Hereby, a generalized time-dependent variable-coefficient Kadomtsev-Petviashvili equation with nonlinearity, dispersion and perturbed terms is investigated. Transformations, of which the consistency conditions are exactly the Painlevé integrability conditions, to the Korteweg-de Vries, cylindrical Korteweg-de Vries, Kadomtsev-Petviashvili and cylindrical Kadomtsev-Petviashvili equation are presented by formal dependent variable transformation assumptions. Using modified Hirota bilinear method, from the variable-coefficient bilinear equation, the multi-solitonic solution, auto-Bäcklund transformation and Lax pair for the variable-coefficient Kadomtsev-Petviashvili equation are obtained. Multi-solitonic solution in Wronskian form is also constructed and verified by the Wronskian technique. Moreover, the influences of the variable-coefficient functions and solitonic structures and interaction properties are discussed for physical interests and possible applications.
魏光美、梁月乾、李晓楠
数学物理学
广义变系数Kadomtsev-Petviashvili方程变量变换改进的Hirota双线性方法多孤子型解孤子结构
generalized variable-coefficient Kadomtsev-Petviashvili equationdependent variable transformationmodified Hirota bilinear methodmulti-solitonic solutionsolitonic structure
魏光美,梁月乾,李晓楠.广义变系数Kadomtsev-Petviashvili方程的变换和多孤子型解[EB/OL].(2010-01-05)[2025-07-25].http://www.paper.edu.cn/releasepaper/content/201001-118.点此复制
评论