生化网络模型参数估计的滤波技术
Parameter Estimation of Biochemical Networks Model Using Filter Technology
信号转导网络的数学模型能够用于分析系统特性,预测系统的动态过程。因此,为了建立信号转导网络的模型,有效估计系统模型的参数是非常重要的。由于实验条件的限制,如观测者、采样尺度、噪声水平和模拟条件等,估计模型参数还是很困难的。受滤波技术在控制领域应用的启发,提出利益扩展Kalman滤波技术估计模型的未知参数和不可观的状态。TNF-α 诱导的NF-κB信号转导网络模型作为研究实例,仿真结果表明了滤波技术的有效性。
he mathematic model of a signal transduction networks can be used to analysis the system properties and give the future predict of the dynamic process. Thus, to effectively estimate model parameters is very important for developing appropriate models. It is still difficult to estimate the parameters of the system model because of laboratory constraints like observable players, sample size, noise level, and stimulation options. Inspired by the application in the control field, the extended Kalman filter technology was proposed to estimate the parameter of the biochemical networks in addition to the unobserved state variables. For this purpose, the TNF-α introduced NF-κB signal transduction pathway model is considered, and simulations show the effectiveness of filter technology.
贾建芳
生物科学现状、生物科学发展生物科学研究方法、生物科学研究技术生物化学自动化技术、自动化技术设备
系统辨识参数估计Kalman滤波NF-κB信号转导网络
parameter estimationKalman filterNF-κB signal transduction pathway
贾建芳.生化网络模型参数估计的滤波技术[EB/OL].(2011-09-16)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201109-245.点此复制
评论