|国家预印本平台
首页|基于前馈神经网络的蜂巢气动软体执行器的分层控制方法

基于前馈神经网络的蜂巢气动软体执行器的分层控制方法

A Two-Level Approach for Solving the Inverse Kinematics of a Soft Arm

中文摘要英文摘要

柔软的材料和新型的驱动机制使得软机器人运动姿态灵活多样、对各类应用环境适应良好,但同时也增加了构建控制系统的难度和复杂性。在这篇文章中,我们提供了一种适用于平面运动的多段可伸长软体手臂的高效控制算法。该算法将逆运动学问题分成两层来解决。第一层(从任务空间到配置空间)根据设计的代价函数,用梯度下降方法来确定最优的姿态;第二层(从配置空间到致动空间)考虑了粘弹性,利用神经网络来确定每个单段姿态所对应的气压。在使用物理原型的实验中,我们验证了控制的精准度和有效性,并通过可选的反馈策略进一步改进了控制算法。

Soft compliant materials and novel actuation mechanisms ensure ?exible motions and high adaptability for soft robots, but also increase the dif?culty and complexity of constructing control systems. In this work, we provide an ef?cient control algorithm for a multi-segment extensible soft armin2Dplane.Thealgorithmseparatetheinversekinematics into two levels. The ?rst level employs gradient descent to select optimized arm's pose (from task space to con?guration space) according to designed cost functions. With consideration of viscoelasticity, the second level utilizes neural networks to ?gure out the pressures from each segment's pose (from con?guration space to actuation space). In experiments with a physical prototype, the control accuracy and effectiveness are validated, where the control algorithm is further improved by an optional feedback strategy.?????

刘兴华、陈小平、陈晓彤、隋之瑜、游轩珂

自动化技术、自动化技术设备计算技术、计算机技术射流技术

软体机器人控制算法粘弹性

SoftRoboticsControl algorithmViscoelasticity

刘兴华,陈小平,陈晓彤,隋之瑜,游轩珂.基于前馈神经网络的蜂巢气动软体执行器的分层控制方法[EB/OL].(2017-06-02)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/201706-65.点此复制

评论