|国家预印本平台
首页|一种结合AdaBoost与mean shift的人眼检测方法

一种结合AdaBoost与mean shift的人眼检测方法

Eye detection based on combination of AdaBoost and mean shift

中文摘要英文摘要

人眼检测是人脸识别系统的中间模块,对人脸识别系统的整体性能影响很大。在系统中,人眼检测被分为粗定位和后处理两个部分。粗定位部分使用Haar特征、AdaBoost算法和级联结构,获得大量的候选点。后处理部分使用含尺度因子的mean shift算法,找到概率密度估计最大的位置,并作为最终精确的人眼位置。实验表明,对于正面人脸,该算法能实时精准的找到人眼位置。

Eye detection is an important part of the face recognition system. It plays a pivotal role in the accuracy of face recognition. In the system, eye detection is divided into coarse detection and fine detection. The haar feature, the AdaBoost algorithm and the attentional cascade are used in the coarse detection to get plenty of candidates. The mean shift, including scale factor, are used in the fine detection to find the maximum position of probability density, which is considered as the ultimate eye position. The experiments show that the algorithm can localize precise eyes for frontal faces in real time.

苏菲、张建、熊金水

计算技术、计算机技术

人脸识别人眼检测daBoostMean shift

Face recognitionEye detectionAdaBoostMean shift

苏菲,张建,熊金水.一种结合AdaBoost与mean shift的人眼检测方法[EB/OL].(2013-01-14)[2025-05-02].http://www.paper.edu.cn/releasepaper/content/201301-616.点此复制

评论