|国家预印本平台
首页|大尺度各向异性物体电磁散射问题的快速解法

大尺度各向异性物体电磁散射问题的快速解法

Fast Solutions of Volume Integral Equations for Electromagnetic Scattering by Large Anisotropic Objects

中文摘要英文摘要

本文针对大尺度各向异性物体的电磁散射问题提出了一种基于体积分方程的快速解法。当物体的电学尺寸很大或者是组成材料十分复杂时,通常需要借助一些快速的数值解法来加速求解过程。传统的快速求解方法是基于SWG基函数的矩量法,但针对各向异性介质可能不适合使用基函数来表示未知函数。在本文中,我们用Nystr"{o}m方法替代矩量法,并提出了相应的快速多极子算法来求解大尺度各向异性物体的电磁散射问题。Nystr"{o}m的许多特性非常有利于快速多极子算法在各向异性物体中的实施。文章还给出了典型的数值解法实例,结果都十分精确。

ccurate analysis for electromagnetic (EM) problems including inhomogeneous or anisotropic structures requires solving volume integral equations (VIEs) in the integral equation approach. When the structures are electrically large in dimensions or constitutively complicated in materials, fast numerical algorithms are desirable to accelerate the solution process. Traditionally, such fast solvers are developed based on the method of moments (MoM) with the divergence-conforming Schaubert-Wilton-Glisson (SWG) basis function or curl-conforming edge basis function, but the basis functions may not be appropriate to represent unknown functions in anisotropic media. In this work, we replace the MoM with the Nystr"{o}m method and develop the corresponding multilevel fast multipole algorithm (MLFMA) for solving large anisotropic problems. The Nystr"{o}m method characterizes the unknown functions at discrete quadrature points with directional components and more degrees of freedoms and it also allows the use of JM-formulation which does not explicitly include material property in the integral kernels in the VIEs. These features with its other well-known merits can greatly facilitate the implementation of MLFMA for anisotropic structures. Typical numerical examples are presented to demonstrate the algorithm and good results have been observed.

童美松、杨春夏、陈瑞鹏、张颖倩

电工基础理论

体积分方程、快速多极子算法、电磁散射、各向异性物体

Volume integral equation multilevel fast multipole algorithm electromagnetic scattering anisotropic object

童美松,杨春夏,陈瑞鹏,张颖倩.大尺度各向异性物体电磁散射问题的快速解法[EB/OL].(2013-12-31)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201312-1287.点此复制

评论