带陡峭位势的Chern-Simons-Schr\'{o}dinger系统基态解的存在性和集中性
Existence and concentration of ground state solutions for Chern-Simons-Schr\"{o}dinger systems with steep well potential
本文研究了一类具有势阱位势的非线性Chern-Simons-Schr{o}dinger系统。利用变分方法、山路定理和Nehari 流形方法,证明了当$\lambda>0$足够大时系统基态解的存在性。并且进一步证明了当$\lambda$收敛到正无穷大时基态解的渐近性行为。
In this paper, we investigate a class of nonlinear Chern-Simons-Schr\"{o}dinger system with steep well potential.\ By using the variational methods,\ the mountain pass theorem and the Nehari manifold methods,\ we prove the existence of ground state solutions for $\lambda>0$ large enough.\ Furthermore,\ we verify the asymptotic behavior of ground state solutions as $\lambda\to+\infty$.
李勇勇、唐春雷、谭金岚
物理学数学
hern-Simons-Schr\"{o}dinger 系统势阱位势基态解集中性
hern-Simons-Schr\"{o}dinger systemSteep well potentialGround state solutionConcentration
李勇勇,唐春雷,谭金岚.带陡峭位势的Chern-Simons-Schr\'{o}dinger系统基态解的存在性和集中性[EB/OL].(2021-02-23)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202102-59.点此复制
评论