基于人工免疫原理检测僵尸网络的方法
rtificial immune system based method of detecting botnets
在人工免疫原理的基础上,提出一种检测僵尸网络的方法。先对抗体抗原进行实值向量编码,然后通过阴性选择算法对候选抗体集进行筛选,并在阴性选择过程中加入经高亲和度抗体变异的抗体,以提高抗体覆盖率,引入协同刺激模型参与决策,使用聚类分析的方法淘汰自我集中的变异个体,最后提出新的检测模型,实现对僵尸网络的实时检测和监控。经实验验证,该检测模型具有一定程度的学习能力及动态性,可有效识别僵尸网络,误报、漏报率较低,并能及时发现攻击预兆。
In the artificial immune system is proposed based on a method of detecting botnets. Antigen on the antibody first real vector coding, and then negative selection algorithm to filter the candidate set of antibodies, and in the negative selection process of adding high-affinity antibodies by the variation of the antibody to improve antibody coverage, the introduction of co-stimulation model of participation decision-making, the use of cluster analysis of the variability out of self-focused individual, and finally proposes a new detection model, to achieve real-time detection of zombie networks and monitoring. The experiments show that the detection model with a certain degree of learning ability and dynamic, which can effectively identify botnets, false, false negative rate low and the timely discovery of new features and zombie attack warning.
赵宇轩
计算技术、计算机技术
计算机应用僵尸网络人工免疫阴性选择算法协同刺激
omputer applicationszombie networksartificial immunenegative selection algorithmco-stimulatory
赵宇轩.基于人工免疫原理检测僵尸网络的方法[EB/OL].(2011-02-21)[2025-08-21].http://www.paper.edu.cn/releasepaper/content/201102-490.点此复制
评论