多种群协同粒子群算法在函数最优问题中的应用
pplication of Multi-Population Cooperative Particle Swarm Optimizer in Function Optimization
粒子群算法由于其简单,收敛速度快等优点,近年来被广泛研究,在很多领域得到应用。但该算法又有着易陷入局部最优的缺点,这在一定程度上限制了算法的应用。本文通过模拟生物群体不同种群间的相互合作,引入了主群和辅助群的概念,辅助群通过独立地运行粒子群算法进行广度搜索而主群通过自身经验和从辅助群得到的信息进行进化。通过主群和辅助群相互通信配合的方式,平衡种群的进化速度,达到局部搜索和全局搜索的平衡,防止陷入局部极值,并最后通过实验验证了多种群协同的粒子群算法比标准粒子群算法有着更优越的性能。
Particle swarm optimization(PSO) algorithm has been developing rapidly and has been applied wiedly for its simplicity and relatively fast convergence speed.But the standard PSO obtain local optimum frequently,which limited the scope of application of the algorithm.This paper presents a Multi-Population Cooperative Particle Swarm Optimizer,which inspirated form communication of the populations of the animals.The algorithm is based on a master-slave model,in which a population consists of a master group and several slave groups.The slave groups execute a single PSO independently to maintain the diversity of particles,while the master group evolves based on its own information and also the information of the slave groups.The master group and the slave groups communication through employing a parameter.The slave groups encourage the global exploration,while the master group promotes local exploitation.The relationship between the master group and slave groups can keep of a right balance of exploration and exploitation,which is essential for the success of a given optimization task.The effectiveness of the algorithm is proved by experiments.
张凤斌、马茂刚
计算技术、计算机技术自动化技术、自动化技术设备
粒子群算法函数优化PSO
Particle Swarm OptimizerFunction OptimizationPSO
张凤斌,马茂刚.多种群协同粒子群算法在函数最优问题中的应用[EB/OL].(2010-11-26)[2025-08-04].http://www.paper.edu.cn/releasepaper/content/201011-617.点此复制
评论