|国家预印本平台
首页|基于提示学习的文档级事件抽取方法

基于提示学习的文档级事件抽取方法

ocument-level Event Extraction Method Based on Prompt Learning

中文摘要英文摘要

事件抽取的主要任务是从非结构化文本中自动地抽取出与特定事件相关的实体、事件类型以及它们之间的关系。目前关于事件抽取的研究方法多是采用在预训练语言模型上根据下游任务进行微调的方式,这种方式将会导致预训练模型的上下游任务不一致;并且多数研究仍集中在单个句子范围内的事件抽取,这样的抽取结果存在事件信息不完整和论元遗漏的问题。针对以上问题,提出了一种基于提示学习的文档级事件抽取模型。首先,使用基于多头注意力机制的命名实体识别模块对文档中的实体进行识别。然后,为了避免对触发词的使用,降低数据标注难度,提出一种量化不同论元角色对事件类型的重要程度的策略,用来定位文档中的事件中心句并判断事件类型。最后,通过基于提示学习的事件论元抽取模块,将论元抽取任务重构为一个条件文本生成任务,从而实现论元抽取。最后在两个公开的文档级事件抽取数据集上进行实验与对比,证明了该方法的创新性与有效性。

he main task of event extraction is to automatically extract entities, event types and their relationships related to specific events from unstructured text. At present, the research methods of event extraction mostly adopt the method of fine-tuning according to the downstream tasks on the pre-training language model, which will lead to inconsistency between the upstream and downstream tasks of the pre-training model; Moreover, most of the researches still focus on the event extraction within the scope of a single sentence. Such extraction results have the problems of incomplete event information and argument omission. Aiming at the above problems, a document level event extraction model based on prompt learning is proposed. First, the named entity recognition module based on multi-head attention mechanism is used to identify the entities in the document. Then, in order to avoid the use of trigger words and reduce the difficulty of data annotation, a strategy to quantify the importance of different argument roles to event types is proposed, which is used to locate the event center sentence in the document and determine the event type. Finally, through the event argument extraction module based on prompt learning, the argument extraction task is reconstructed into a conditional text generation task to achieve argument extraction. Finally, experiments and comparisons are carried out on three open document-level event extraction data sets, which prove the innovation and effectiveness of this method.

刘建毅、王慧敏

计算技术、计算机技术

人工智能文档级事件抽取提示学习预训练语言模型无触发词

artificial intelligencedocument-level event extractionprompt learningpre-trained language modelno trigger word

刘建毅,王慧敏.基于提示学习的文档级事件抽取方法[EB/OL].(2023-03-17)[2025-08-24].http://www.paper.edu.cn/releasepaper/content/202303-205.点此复制

评论