|国家预印本平台
首页|基于行为的Android恶意软件检测系统

基于行为的Android恶意软件检测系统

Behavior-based Android Malware Detection System

中文摘要英文摘要

随着Android恶意软件数量的逐年增加,很多相关领域的专家与学者都对恶意软件检测技术进行了研究。在这些研究中,基于行为分析的恶意软件检测往往能产生很好的效果。这篇文章主要介绍了一个基于行为的Android恶意软件检测系统的设计与实现。该系统使用Android API以及libc(Bionic libc)库函数及其参数来描述恶意行为,并且通过机器学习实现行为分析与恶意软件检测。本文使用了750个真实的Android软件作为实验样本,并且使用了三种评估指标对该系统的检测效果进行评估。实验结果显示,本系统可以有效的对Android恶意软件进行检测。

With the number of Android malware growing year by year, many researches on malware detection techniques have been conducted. In those researches, behavior analysis techniques are highly effective on malware detection. In this paper, a behavior-based Android malware detection system is proposed. It uses Android APIs and libc function calls combined with their arguments to describe sensitive behaviors and conducts behavior analysis and malware detection via machine learning techniques. The experiment is conducted with 750 real-world applications which are composed of various types of malware and benign softwares, and three standard metrics are used to evaluate the effect of software classification and malware detection of the system. The experimental result shows that the system can effectively detect Android malware.

张京

计算技术、计算机技术

ndroid安全行为分析恶意软件检测隐私保护

ndroid SecurityBehavior AnalysisMalware DetectionPrivacy Protection

张京.基于行为的Android恶意软件检测系统[EB/OL].(2014-12-26)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201412-815.点此复制

评论