|国家预印本平台
首页|结合全变差和小波变换的图像去噪算法及在SAR图像上的应用

结合全变差和小波变换的图像去噪算法及在SAR图像上的应用

Image denoising algorithm combining total variation and wavelet transform and its application in SAR image

中文摘要英文摘要

在合成孔径雷达(SAR)图像中,常见一种相干斑(Speckle)噪声干扰,严重影响了SAR图像后续的处理和分析,并且对视觉效果也有干扰。为了解决这一问题,介绍了一种结合小波变换、整数阶全变差(Total Variation, TV)和变指数分数阶全变差(Fractional Total Variation, FTV)的混合去噪方法。小波变换能够聚焦到图像细微变化,并且能够在较短时间内进行分解和重构,首先由小波分解将SAR图像分解成一个低频图像和三个高频图像,然后利用整数阶全变差和变指数分数阶全变差分别对高、低频图像进行处理,最后小波逆变换重构得到去噪后的图像。该方法不仅有效地去除相干斑噪声,同时还很好的保持边缘和纹理细节。在真实SAR图像上的大量实验验证了该方法有效,具有一定的实用价值。

In Synthetic Aperture Radar (SAR) images, a common Speckle noise interference seriously affects the subsequent processing and analysis of SAR images, and also interferes with the visual effect. In order to solve this problem, this essay introduces a hybrid denoising method that combines wavelet transform, integer-order total variation (TV) and variable exponential fractional total variation (FTV). Wavelet transform can focus on subtle changes in the image and can be decomposed and reconstructed in a short time. First, the SAR image is decomposed into a low-frequency image and three high-frequency images by wavelet decomposition. Then use integer-order total variation and variable exponential fractional total variation to process high and low frequency images respectively. Finally, the denoised image is reconstructed by inverse wavelet transform.This method can not only remove speckle noise effectively, but also preserve edge and texture details very well. Many experiments on real SAR images have verified that this method is effective and has a certain practical value.

罗小波、朱明、殷江桥、王欧

雷达

合成孔径雷达(SAR)图像相干斑小波变换变指数分数阶全变差整数阶全变差

synthetic aperture radar (SAR) imagesspecklewavelet transformThe fractional totalvariation of variable exponentialsinteger order total variation

罗小波,朱明,殷江桥,王欧.结合全变差和小波变换的图像去噪算法及在SAR图像上的应用[EB/OL].(2021-11-03)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/202111-7.点此复制

评论