|国家预印本平台
首页|基于HRV分析的可穿戴心电仪精神疲劳检测

基于HRV分析的可穿戴心电仪精神疲劳检测

中文摘要英文摘要

精神疲劳是许多慢性疾病如心血管疾病、糖尿病和癌症的关键原因,然而又难以量化评估及测量,提出了一种通过智能穿戴设备检测脑力劳动者疲劳程度的工程可行性的方案。为了检测脑力疲劳程度,通过Man-Whitney U检验评估了HRV各项指标在判断精神疲劳状态的统计显著性,并使用随机森林进行特征选择以确定HRV各项指标的重要性;研究发现,最重要的HRV指标分别是NN。mean,PNN50、VLF、LF和TP。最后采用SVM、Na?ve Bayes、KNN和逻辑回归四种机器学习算法对进行疲劳状态进行识别,实验证明了KNN分类器最为有效,其交叉验证准确率为75.5%和AUC为0.74。

Mental fatigue is a key cause of many chronic diseases such as CVD, diabetes and cancer. It is illusive and hard to measure or detect. This research proposes a feasible accurate and cost saving method to detect fatigue level of mental workers via smart wearable devices. In order to detect mental fatigue level, this paper firstly extracted HRV features, then used Man-Whitney U Test to evaluate the statistical significances of HRV features between Normal and Fatigue state. This paper used Random Forest for feature selection to determine the importance of HRV features. The most important HRV features are NN. mean, PNN50, VLF, LF and TP respectively. This paper then took four machine learning algorithms on selected features to predict the state of mental fatigue. The experiments demonstrated the effectiveness of KNN classifier with 75.5% accuracy rate on cross validation and 0.74 AUC.

黄诗童、张威强、张朋柱

10.12074/201807.00042V1

医学研究方法生理学生物科学教育

精神疲劳检测HRV曼-惠特尼检验随机森林机器学习

黄诗童,张威强,张朋柱.基于HRV分析的可穿戴心电仪精神疲劳检测[EB/OL].(2018-07-09)[2025-06-14].https://chinaxiv.org/abs/201807.00042.点此复制

评论