|国家预印本平台
首页|Multiple Myeloma Cancer Cell Instance Segmentation

Multiple Myeloma Cancer Cell Instance Segmentation

Multiple Myeloma Cancer Cell Instance Segmentation

来源:Arxiv_logoArxiv
英文摘要

Images remain the largest data source in the field of healthcare. But at the same time, they are the most difficult to analyze. More than often, these images are analyzed by human experts such as pathologists and physicians. But due to considerable variation in pathology and the potential fatigue of human experts, an automated solution is much needed. The recent advancement in Deep learning could help us achieve an efficient and economical solution for the same. In this research project, we focus on developing a Deep Learning-based solution for detecting Multiple Myeloma cancer cells using an Object Detection and Instance Segmentation System. We explore multiple existing solutions and architectures for the task of Object Detection and Instance Segmentation and try to leverage them and come up with a novel architecture to achieve comparable and competitive performance on the required task. To train our model to detect and segment Multiple Myeloma cancer cells, we utilize a dataset curated by us using microscopic images of cell slides provided by Dr.Ritu Gupta(Prof., Dept. of Oncology AIIMS).

Dikshant Sagar

肿瘤学生物科学现状、生物科学发展计算技术、计算机技术

Dikshant Sagar.Multiple Myeloma Cancer Cell Instance Segmentation[EB/OL].(2021-09-19)[2025-05-28].https://arxiv.org/abs/2110.04275.点此复制

评论