|国家预印本平台
首页|基于图像处理的轴承套圈裂纹检测系统

基于图像处理的轴承套圈裂纹检测系统

Bearing Ring Crack Detection System Based on Image Processing

中文摘要英文摘要

针对目前轴承套圈磁粉检测自动化程度低、效率低下的问题,本文提出了一种基于图像处理的裂纹检测系统,主要包括中值滤波、构造带阻滤波器、边缘检测、主成分分析和支持向量机学习分类等。边缘检测采用Deriche算子,对比Canny算子具有准确率高、运算速度快特点。对裂纹特征参数多、运算量大的问题,采用主成分分析法将特征参数从8维降为3维,并对比有无该算法在运算时间和准确率方面的差异性。最后支持向量机对所得主成分参数进行学习分类,通过实验得出核参数在0.02时准确率高达97.3%。

o solve the problem that the automation and efficiency of bearing magnetic detection is low, a crack detection system based on image processing is introduced. It includes median filter, band elimination filter, edge detection, PCA and SVM. The Deriche operator, which is used in edge detection, has higher accuracy and faster speed compared with Canny operator. Aimed at the problem that characteristic parameters and computation are large, the PCA is adopted to reduce the characteristic parameters from 8 to 3 dimensions. Then the difference of the computation time and accuracy, with or without PCA, is analyzed. Finally, the SVM is used to learn and classify the crack parameters. And results show that the accuracy is 97.3% when the kernel parameter is 0.02.

帅立国、张雨露、刘金肖

自动化技术、自动化技术设备机械学计算技术、计算机技术

图像处理轴承套圈裂纹主成分分析支持向量机

Image processingBearing ring crack defectionPCASVM

帅立国,张雨露,刘金肖.基于图像处理的轴承套圈裂纹检测系统[EB/OL].(2017-03-15)[2025-08-24].http://www.paper.edu.cn/releasepaper/content/201703-183.点此复制

评论