基于多任务学习的图像标签补全算法
Image Tag Completion via Multi-task Learning
本文基于多任务学习中信息共享的思想,提出了一种对图像标签进行补全的新方法,以低秩矩阵分解的方式来促进相似的图像和相关联的标签之间共享信息。具体而言,初始标签矩阵被分解为基矩阵和相应的稀疏系数矩阵,与此同时,标签空间和图像特征空间的局部几何重建结构分别被基矩阵和系数矩阵所保持,从而充分利用已知信息。为了使稀疏重建模块更加鲁棒,本文使用柔性网结构作为规范项。为了验证该方法,本文对其在两个数据库上的效果分别进行了测试,并与现有方法进行了对比,实验结果证明了该方法的有效性。
novel method for image tag completion is proposed in this paper, which draws inspiration from multi-task learning and aims to promote information sharing between similar samples and related tags via low rank matrix factorization. Specifically, the initial tag matrix is decomposed into a basis matrix and a sparse coefficient matrix, and proper regularization is introduced to exploit various side information, by ensuring the preservation of local geometry structures in both tag space and feature space. Furthermore, the scheme of elastic net is utilized in our sparse construction, to gain improved robustness. Experiments conducted on two datasets with different features demonstrate the effectiveness and efficiency of the proposed method.
章毓晋、李雪
计算技术、计算机技术
人工智能标签补全多任务学习稀疏编码.
rtificial intelligence tag completion multi-task learning sparse coding.
章毓晋,李雪.基于多任务学习的图像标签补全算法[EB/OL].(2014-12-18)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/201412-542.点此复制
评论