|国家预印本平台
首页|一类0-1背包问题的贪婪遗传算法

一类0-1背包问题的贪婪遗传算法

greedy genetic algorithm for a class of the 0-1 knapsack problems

中文摘要英文摘要

针对一类0-1背包问题提出一种新的混合遗传算法,贪婪遗传算法使用贪婪法则产生第一个染色体,并在进化过程中利用贪婪算子改进部分可行解。在使用高变异概率的同时使用低交叉概率,充分发挥变异操作在遗传算法中重要而基本的作用,克服遗传算法的局限性。通过对大约400,000个精心构造的新实例的计算发现,找到最优解的平均时间随系数增大而变得小于一些著名的完全算法,平均在0.3ms与430.6ms之间,而平均代数为1到40。

new HGA for a class of 0-1KP called Greedy Genetic Algorithm is presented. GGA turns greedy principle to advantage. The greedy approach is used for generating the first chromosome, and made use of the greedy-operator to improve some feasible solutions further in the course of evolution. GGA uses larger mutation probability and smaller crossover probability at the same time to overcome GA’s limitation, mutation operation in GA plays an important and fundamental role in. Numerous computational experiments have been carried out on about 400,000 well-structured new classes of instances, and a comparative analysis with some recent state-of-art exact algorithms for the 0-1KP is given. It is found that the average computing time of GGA grow to be less than the time of the exact algorithms in company with an increase in coefficients. The average computing time to search for an optimal solution is between 0.3ms and 430.6ms, and the average generation is 1 to 40.

金怀群

计算技术、计算机技术

背包问题贪婪算法遗传算法贪婪遗传算法

0-1 knapsack problemgreedy algorithmgenetic algorithmsgreedy genetic algorithm

金怀群.一类0-1背包问题的贪婪遗传算法[EB/OL].(2010-03-02)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/201003-58.点此复制

评论