基于深度学习的商品评论情感分类研究
Research on Sentiment Classification of Commodity Reviews Based on Deep Learning
目的 / 意义 ] 对已有的文本表示、分类算法进行组合,遴选一种复杂度低、训练时间少的组合方式,构建商品评论情感文本分类的优化模型。[ 方法 / 过程 ] 以 Keras API 为应用环境,将 Word2vec 词向量输入 Embedding 嵌入层,依据句子词索引序列,通过控制 trainable 参数实现 3 种商品评论的文本表示;将不同的文本表示分别与不同分类算法进行匹配,分析分类效果差异,确立较优算法组合。[ 结果 / 结论 ]Word2vec词向量输入Embedding嵌入层继续训练的文本表示方法,结合TextCNN算法训练获得的分类模型,在商品评论测试集上分类效果表现较好,准确率和ROC曲线面积AUC值分别为94.02%、0.982 7。应用表明,分类模型能较好实现商品评论的情感分类,有较好的分类泛化能力。
Purpose/significance] The existing text representation and classification algorithms are combined,and a combination mode of low complexity and less training time is selected to construct an optimizationmodel for the classification of emotional texts of commodity reviews. [Method/process] Firstly, this papertook the Keras API as an application environment, input Word2vec word vector into Embedding embeddedlayer. Then, based on sentence word index sequence, three kinds of commodity comment text representationwere realized by controlling the trainable parameter. Finallyin this paper, different text representationswere matched with different classification algorithms, differences in classification effects were analyzed, andthe better combination of algorithms was established. [Result/conclusion] The text representation methodwhich is continued training by Inputting Word2vec Word Vector into Embedding embedded Layer, combinedwith the TextCNN algorithm establishes the classification model. It performs better on the product reviewtest set. Its accuracy and ROC curve area AUC values are 94.02% and 0.9827, respectively. The applicationshows that the classification model can better realize the emotional classification of commodity reviews andhas better classification generalization ability.
李文江、陈诗琴
dx.doi.org/10.13266/j.issn.2095-5472.2018.034
计算技术、计算机技术
深度学习情感分类Word2vec词向量Embedding嵌入层extCNN
deep learningsentiment classificationWord2vec word vectorEmbedding embedded layerextCNN
李文江,陈诗琴.基于深度学习的商品评论情感分类研究[EB/OL].(2023-10-08)[2025-08-16].https://chinaxiv.org/abs/202310.03063.点此复制
评论