|国家预印本平台
首页|面向流式数据的异常检测系统

面向流式数据的异常检测系统

nomaly Detection System for Streaming Data

中文摘要英文摘要

异常检测系统与企业生产的各个环节起到了重要的作用。本论文致力于介绍一种流式数据异常检测系统的工程实现,以应对在实时计算环境中高效处理大规模数据流的需求,并确保具备高并发、平滑扩展等关键功能。首先,我们探讨了流式数据处理的日益重要性,尤其是在需要实时响应和监测的场景下,由于传统批处理系统无法满足实时性要求,流式数据处理系统成为处理大规模数据流的关键工具。然而,流式数据异常检测系统的工程实现面临挑战,如如何实现高并发处理、平滑扩展以适应不断增长的数据流。因此,本文提出的系统采用了先进的实时计算技术,结合了高并发和平滑扩展的设计原则,以确保在处理大规模数据流时能够保持高效稳定。同时,系统具备支持机器学习模型部署的能力,使得用户可以轻松集成和应用各种异常检测模型。实验证明,本文提出的流式数据异常检测系统在实时计算、高并发和平滑扩展等方面表现出色,为实际应用场景提供了可靠的解决方案,为流式数据异常检测领域的进一步研究和应用提供了有力支持。

he anomaly detection system plays a crucial role in various stages of enterprise production. This paper is dedicated to introducing an engineered implementation of a streaming data anomaly detection system, designed to efficiently handle large-scale data streams in real-time computing environments, ensuring key functionalities such as high concurrency and seamless scalability. Initially, we discuss the growing significance of streaming data processing, particularly in scenarios requiring real-time response and monitoring. Traditional batch processing systems fall short of meeting real-time requirements, making streaming data processing systems pivotal for handling large-scale data streams. However, the engineering implementation of streaming data anomaly detection systems faces challenges, such as achieving high concurrency and smooth scalability to adapt to the continuously increasing data flow. Consequently, the proposed system in this paper incorporates advanced real-time computing techniques, combining principles of high concurrency and seamless scalability to ensure efficient stability while processing large-scale data streams. Simultaneously, the system possesses the capability to support the deployment of machine learning models, enabling users to seamlessly integrate and apply various anomaly detection models. Experimental results demonstrate the exceptional performance of the proposed streaming data anomaly detection system in real-time computing, high concurrency, and seamless scalability, providing a reliable solution for practical application scenarios. This paper contributes robust support for further research and application advancements in the field of streaming data anomaly detection.

徐鹏、王宇晟

计算技术、计算机技术

异常检测流式数据分布式系统

nomaly Detection,Streaming Data, Distributed System

徐鹏,王宇晟.面向流式数据的异常检测系统[EB/OL].(2024-02-28)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/202402-102.点此复制

评论