基于机理约束神经网络的LF精炼终点温度预测
emperature prediction of LF refining endpoint based on mechanism constrained neural network
LF精炼是广泛应用的炉外精炼方式,作为炼钢过程的最后一道工序,其终点温度的控制显得尤为重要。现在大多钢厂依赖操作人员经验和多次测温等辅助手段对终点温度进行调控,存在终点温度精准预测和控制难的问题。基于此,本文以国内某钢厂260t LF炉为研究对象,首先通过对精炼过程的热平衡分析,获得了终点温度的影响因素,发现上述因素直接影响LF精炼过程的升温幅度(LF出站温度与LF进站温度的差值)从而间接影响终点温度,故而建模时以LF升温幅度为输出项对LF终点温度进行间接预测,同时从冶金机理和数据角度共同挖掘出对LF升温幅度影响最大的两个因素:LF进站温度、LF吨钢耗电量及其与LF升温幅度之间的单调性关系,在单调约束思想的指导下,将上述单调关系添加到神经网络的损失函数中加以约束,建立单隐含层的机理约束神经网络,该模型在±10℃误差范围内命中率达到了94.05%,高于用人工神经网络直接预测终点温度的91.00%和用人工神经网络对终点温度进行间接预测的92.14%。
he LF refining process, widely used as the final step in steelmaking, highlights the critical importance of endpoint temperature control. Presently, most steel mills rely on operators\' experience and multiple temperature measurements to regulate endpoint temperatures, encountering challenges in achieving precise prediction and control. This paper focuses on a 260t LF furnace in a domestic steel mill, initiating with a thermal balance analysis of the refining process to identify factors influencing the endpoint temperature. It is discovered that these factors directly impact the heating range (the difference between outlet and inlet temperatures during LF refining), thereby indirectly affecting the endpoint temperature. Consequently, in modeling, the heating range is adopted as the output for indirect endpoint temperature prediction. By combining metallurgical principles with data analysis, two predominant factors affecting the LF heating range are uncovered: the initial LF temperature and the specific electric energy consumption per ton of steel, along with their monotonic relationships with the heating range. Guided by the principle of monotonic constraint, these relationships are incorporated into the loss function of a neural network, establishing a single-hidden-layer neural network model. This model achieves an accuracy rate of 94.05% within a ±10 C error margin, surpassing the 91.00% accuracy when using artificial neural networks for direct endpoint temperature prediction and the 92.14% accuracy in indirect endpoint temperature prediction via artificial neural networks.
马江浩、贺东风
炼钢自动化技术、自动化技术设备计算技术、计算机技术
LF精炼,终点温度精准预测,机理约束神经网络
LF RefiningAccurate Endpoint Temperature PredictionMechanism-Constrained Neural Network
马江浩,贺东风.基于机理约束神经网络的LF精炼终点温度预测[EB/OL].(2024-05-20)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/202405-111.点此复制
评论