|国家预印本平台
首页|低维空间下的短支集样条小波基

低维空间下的短支集样条小波基

Small Support Spline Riesz Wavelets in Low Dimensions

中文摘要英文摘要

2006年,韩斌和沈佐伟给出了由均匀节点的B-样条来构造一类单变量短支集的小波基的方法。2005年,他们构造了一个由循环方案生成的二元样条小波基。受以上两篇文章的启发,本文发展了一套一般性的理论。本文提出了一种构造性的算法,由低维空间的细分函数(特别地,二维和三维的箱样条)来构造短支集的小波基。短支集的小波基在很多应用中非常重要。比如说,2009年,M.J.~Johnson, Z.~Shen和Y.H.~Xu用到了韩斌和沈佐伟2006年构造的短支集小波基;2000年,A. Khodakovsky, P. Schr"oder和W. Sweldens用到了由循环方案生成的二元样条小波基。

B.~Han and Z.~Shen constructed afamily of univariate short support Riesz waveletsfrom uniform B-splines in 2006. A bivariate spline Riesz wavelet basis fromthe Loop scheme was derived by B.~Han and Z.~Shen in 2005.Motivated bythese two papers, we develop in this article ageneral theory and a construction method to derive small supportRiesz wavelets in low dimensions from refinable functions. Inparticular, we obtain small support spline Riesz wavelets frombivariate and trivariate box splines. Small support Riesz waveletsare desirable for developing efficient algorithms in variousapplications. For example, the short support Riesz wavelets constructed byB.~Han and Z.~Shen were used in a surface fitting algorithm byM.J.~Johnson, Z.~Shen and Y.H.~Xu in 2009, and the Riesz wavelet basis from the Loop scheme wasused in a very efficient geometric mesh compression algorithm byA. Khodakovsky, P. Schr"oder and W. Sweldens in 2000.

韩斌、沈佐伟、莫群

数学

函数论小波基箱样条线性独立索伯列夫空间

Function theory Riesz wavelet bases box splines linear independence Sobolev spaces

韩斌,沈佐伟,莫群.低维空间下的短支集样条小波基[EB/OL].(2011-02-18)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201102-285.点此复制

评论