由幂律剪力驱动的可穿透平板上的\非牛顿流体流动
Laminar flows of non-Newtonian fluids driven by power-law shear over a porous stretching flat sheet
本文研究了外场呈幂律分布的剪力引起的可穿透拉伸平板上的非牛顿边界层流动问题。通过相似变换,边界层方程简化为远场具有代数衰减边界条件的常微分方程,运用数值方法求解,得到了许多具有代数衰减特性的解。研究发现,对于给定的α 和β,有解的条件为 fw≥f w min。进一步地研究表明,对于规定的fw和α 的值,在 0≤β≤βmax时解总是存在的,其中βmax对应于 lim n→0 f''(η)=0。并且,可以发现在 -1/2<α<0时,不管是抽吸或喷注解都是存在的。然而当 -1<α<-1/2 时,解仅在抽吸时存在。并且,可以发现当α=-1时,该问题没有解存在。
he boundary-layer flows of non-Newtonian power-law fluids adjacent to a stretching plane surface driven by an outer power-law shear in the presence of suction or injection are investigated. The boundary-layer equations are reduced to an ordinary differential equation with algebraical boundary condition at far field. A number of solutions with algebraical decaying behaviour are captured numerically. It is found that such solutions are possible if and only if fw ≥fw min for properly given values of α and β. We further notice that for properly prescribed values of fw and α, solutions can always be found in the range 0≤β≤βmax, where βmax corresponds to lim n→0 f''(η)=0. Besides, it is found that in the range -1/2<α<0, both the suction and the injection solutions could be available. While when -1<α<-1/2, only the solutions of suction type are possible. Furthermore, it is found that no solution is possible when the wall stretching is applied to the porous wall in the case of α=-1.
伊万. 珀谱、樊涛、徐航
力学
边界层代数特性抽吸喷注相似解
boundary-layeralgebraical behavioursuctioninjectionsimilarity solution
伊万. 珀谱,樊涛,徐航.由幂律剪力驱动的可穿透平板上的\非牛顿流体流动[EB/OL].(2012-06-21)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201206-313.点此复制
评论