基于SVM的项目协同过滤算法
ITEM-BASED COLLABORATIVE FILTERING ALGORITHM BASED ON SVM
文本针对互联网订餐系统的特点和现有智能购物系统及项目数量急剧增长导致的数据稀疏性问题,提出了一种基于SVM的项目协同过滤算法。该方法将SVM算法应用到基于项目的协同过滤推荐算法中。首先使用现有数据训练SVM模型,接着然用训练好的模型来计算项目之间的相似度,然后预测客户对未评分项目的评分值,最后产生推荐。仿真实验显示该方法有较低的平均绝对误差和较高的精确度。
iming at the characteristics of the Internet reservation system and the existing e-commerce system users and items sharp growth in the number of data sparsity problem, proposed a item-based collaborative filtering algorithm based on SVM. In this method, the SVM algorithm is used in item-based collaborative filtering recommendation algorithm, SVM trains model by using existing data, then use the trained model to calculate the similarity between items, and predict the scores of users on the item which was not scoring, resulting recommendations. Simulation experiment illustrates the method has a lower mean absolute error and a higher precisions, indicates the validity of the method. And the method is applied to the online reservation system.)
余文、赵婷
计算技术、计算机技术
推荐系统支持向量机协同过滤数据稀疏性
Recommendation systemSVMollaborative filteringata sparsity
余文,赵婷.基于SVM的项目协同过滤算法[EB/OL].(2015-12-24)[2025-08-24].http://www.paper.edu.cn/releasepaper/content/201512-1201.点此复制
评论