基于L1范数的形状快速匹配算法
针对内距离形状上下文IDSC(inner-distance shape context)和轮廓点分布直方图CPDH(contours points distribution histogram)在形状相似性度量中直方图匹配耗时长,工程应用性不佳的问题,提出了一种用EMD-L1测量轮廓特征直方图的距离的方法。EMD-L1在原始EMD (earth mover’s distance)的基础上融合了L1范数,通过替换地面距离计算方法,减少了目标函数的变量,加快了直方图匹配的速度,能够快速实现形状匹配并保持较好的检索性能。对形状数据集进行仿真实验的结果证明,该方法能够有效地进行数据集的形状识别和检索,并且在MNIST数据集下的匹配速度优于其他算法。
bstract; In order to solve the problem that the histogram matching time is long and the engineering application is poor. This paper proposed to use EMD-L1 to measure the distance between two feature histograms. EMD-L1 fusion of the L1 norm and the original Earth Mover's Distance (EMD) and replace the calculation of the ground distance. The algorithm reduce the number of unknown variables, could achieve shape matching quickly and has a good retrieval performance. With a great deal of experiments in several shape databases, the results show that the performance of novel method are superior to original algorithm. And the matching speed is better than other algorithms under the MNIST data set.
王江辉、吴小俊
计算技术、计算机技术
内距离形状上下文轮廓点分布直方图地球移动距离(EMD)L1范数形状检索
王江辉,吴小俊.基于L1范数的形状快速匹配算法[EB/OL].(2018-05-20)[2025-08-11].https://chinaxiv.org/abs/201805.00254.点此复制
评论