基于自注意力机制与UNet模型的心脏图像分割
ine MRI Image Segmentation based on Transformer and UNet
随着医学图像处理领域的不断发展,对于心血管磁共振成像的自动分割逐渐成为热点问题之一。然而,心脏MRI图像容易出现边界不清晰、像素亮度不均匀等问题,从而导致了分割结果中类间像素差异不明显等问题。针对这一问题,基于医学图像分割领域常用的UNet模型,本文引入了自然语言处理领域常用的自注意力机制,充分发掘图像的全局信息;同时,引入方向特征矩阵,利用像素的方向信息,增强不同类像素之间的差异性,优化模型在边界处的分割结果。模型主要分为分割模块和方向特征模块,自注意力机制用以替换构建模块中的卷积结构,从而更好的捕捉长期依赖;分割模块的输出作为方向特征模块的输入,方向特征模块用于预测像素与距其最近的边界之间的方向向量。同时,本文使用了卷积进行降采样,以减少引入自注意力机制所带来的计算负担。为了对模型效果进行评估,本文使用了2017MICCAI心脏自动诊断(Automated Cardiac Diagnosis Challenge, ACDC) 数据集与多源,多中心,多疾病心脏图像分割(Multi-Centre, Multi-Vendor & Multi-Disease Cardiac Image Segmentation Challenge, M&Ms)数据集进行验证,并表现出来良好的分割能力。?????
s the development of medical image processing,automatic Cardiac MRI segmentation has been one of the most important issues. However,the unclear boundaries and inhomogeneous intensity in MRI images usually cause indistinction for pixels from different class around boundaries,limiting accuracy of the segmentation result. In this paper,Transformer which is common in natural language processing is introduced into UNet,which is common in medical image segmentation to capture global information;meanwhile,direction feature is used enhance comparison for inter-classes pixels for better performance near the boundaries. The network can be divided into segmentation module and direction feature module:self-attention mechanism is used to replace the convolution module in building blocks for long-range dependence;result of segmentation module is taken as input of direction feature module,which utilize direction vector from pixel to its nearest boundary pixel to improve segmentation accuracy near by boundaries. Performance of the network is evaluated on the 2017 MICCAI Automated Cardiac Diagnosis Challenge (ACDC) dataset and Multi-Centre, Multi-Vendor & Multi-Disease Cardiac Image Segmentation Challenge dataset and got satisfied result.
马心悦、孙学斌
医学研究方法计算技术、计算机技术基础医学
心脏图像分割深度学习自注意力方向特征
ardiac MRI segmentationDeep LearningTransformerDirection Feature
马心悦,孙学斌.基于自注意力机制与UNet模型的心脏图像分割[EB/OL].(2023-05-12)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202305-55.点此复制
评论