Binomial edge ideals of small depth
Binomial edge ideals of small depth
Let $G$ be a graph on $[n]$ and $J_G$ be the binomial edge ideal of $G$ in the polynomial ring $S=\mathbb{K}[x_1,\ldots,x_n,y_1,\ldots,y_n]$. In this paper we investigate some topological properties of a poset associated to the minimal primary decomposition of $J_G$. We show that this poset admits some specific subposets which are contractible. This in turn, provides some interesting algebraic consequences. In particular, we characterize all graphs $G$ for which $\mathrm{depth}\hspace{1.2mm} S/J_G=4$.
Sara Saeedi Madani、Dariush Kiani、Mohammad Rouzbahani Malayeri
数学
Sara Saeedi Madani,Dariush Kiani,Mohammad Rouzbahani Malayeri.Binomial edge ideals of small depth[EB/OL].(2020-12-29)[2025-05-24].https://arxiv.org/abs/2012.14904.点此复制
评论