|国家预印本平台
首页|基于人眼注意力机制的无参考背景替换视频质量评估

基于人眼注意力机制的无参考背景替换视频质量评估

No-reference video quality assessment based on human attention system for background replacement applications

中文摘要英文摘要

随着图像及视频的背景替换在短视频制作以及高清视频会议等场景下的广泛应用,越来越多的背景替换算法和视频作品产生,但替换后的图像及视频质量存在较大差异。对背景替换后的图像及视频的质量进行评价,在工业界和学术界都有重要的指导意义。在背景替换场景下,影响替换后视频质量的因素包括视频帧受损程度、帧间抖动、构图和色度和谐度,其中视频帧的精度质量是非常重要的评价维度。本文提出基于视觉注意力机制的深度学习算法,实现背景替换视频质量评价算法中的精度质量评价。首先设计卷积神经网络提取失真信息,然后通过注意力机制融合空域显著性特征和时域运动特征,最后拟合人眼对视频精度主观感知,实现背景替换视频的感知精度评价。

With the wide application of image and video background replacement in many scenes such as short video production and high-definition video conference, more and more background replacement algorithms and video creations are produced. But there are great differences in the quality of image and video after replacement. Evaluating the quality of image and video after background replacement has important guiding significance in industry and academia. In the background replacement scene, the factors affecting the video quality after replacement include the distorsion of video frames, inter frame jitter, composition and chroma harmony. Among them, the accuracy and quality of video frames is a very important evaluation dimension. In this paper, we proposes a deep learning algorithm based on visual attention mechanism to realize the accuracy quality assessment in the application of video background replacement. Firstly, the convolution neural network (CNN) is designed to extract the distortion feature, and then the spatial saliency feature and temporal motion feature are fused through the attention mechanism. Finally, the subjective perception of video accuracy by human vision is fitted to evaluate the perception accuracy of background replacement videos.

王怡楠、沈奇威、王晶

电子技术应用

无参考视频质量评价,注意力机制,显著性目标检测,背景替换算法

No-reference video quality assessmenthuman attention mechanismsalient object detectionvideo background replacement.

王怡楠,沈奇威,王晶.基于人眼注意力机制的无参考背景替换视频质量评估[EB/OL].(2022-03-04)[2025-08-21].http://www.paper.edu.cn/releasepaper/content/202203-52.点此复制

评论