|国家预印本平台
首页|基于语义压缩的深度JSCC研究

基于语义压缩的深度JSCC研究

eep JSCC research based on semantic compression

中文摘要英文摘要

未来智能体的通信需要重新审视通信的目的、方式和过程。智能体之间通信是为完成智能任务,即语用层面通信。香农分离定理应用在面向语用层面的语义通信场景中存在语义信息提取难等局限性。相比于分离方案,联合信源信道编码方案能够提升系统整体性能,特别是将深度联合编码方式应用到语义通信编码端,可以高效提取任务的语义特征。针对接收端不需要重建信源的分类任务,本文在语义通信发送端改进了现有的深度联合信源信道编码技术,引入了一种策略机制。策略机制受分类任务驱动可以学习到信源数据的语义特征,通过调节策略机制在整个语义编码网络中的侧重还可以改变语义压缩程度。本文引入策略机制的深度联合信源信道编码方案(JSCC)相比现有的深度联合编码方案,在AWGN信道条件下,相同的特征压缩率下分类性能得到很大的提升。与传统JEPG编码比,联合编码方案在低信噪比情况下,分类性能得到大幅提升。

In the future, the communication of agents needs to re-examine the purpose, way and process of communication. The communication between agents is to complete intelligent tasks, that is, pragmatic communication. Shannon\'s separation theorem has some limitations such as difficulty in extracting semantic information in pragmatically oriented semantic communication scenarios. Compared with the separation scheme, the joint source channel coding scheme can improve the overall performance of the system. In particular, the deep joint coding method is applied to the semantic communication coding terminal, which can efficiently extract the semantic features of the task. Aiming at the classification task that the receiver does not need to reconstruct the source, this paper improves the existing deep joint source channel coding technique and introduces a strategy mechanism in the semantic communication sender. Driven by classification tasks, the policy mechanism can learn the semantic features of source data, and the degree of semantic compression can be changed by adjusting the emphasis of the policy mechanism in the whole semantic coding network. Compared with the existing deep joint source channel coding schemes, the deep joint source channel coding scheme (JSCC) introduced in this paper greatly improves the classification performance under the condition of AWGN channel with the same feature compression ratio. Compared with the traditional JEPG encoding, the combined encoding scheme greatly improves the classification performance under the condition of low signal-to-noise ratio.

林家儒、刘友标

通信无线通信

信息与信号处理语义通信JSCC语义压缩策略机制

Informationand signal processingSemantic communicationJSCCSemantic compressionPolicy mechanis

林家儒,刘友标.基于语义压缩的深度JSCC研究[EB/OL].(2023-04-04)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/202304-43.点此复制

评论