|国家预印本平台
首页|自适应滤波结合改进T-Snake模型的甲状腺超声图自动分割方法

自适应滤波结合改进T-Snake模型的甲状腺超声图自动分割方法

中文摘要英文摘要

本文提出一种基于T-Snake模型的甲状腺超声波图像分割的新方法。首先,结合基于窗口的各向异性扩散滤波方法与自适应加权中值滤波算法,有效的消除甲状腺超声波图像斑点噪声。其次,以传统T-Snake模型为基础,增加自适应的区域能量和膨胀力,对非连续边界与弱边界进行有效提取,实现甲状腺超声波图像的自动分割。最后,设定模型参数,使用临床数据进行实验,结果证明,应用本文方法得到的自动分割结果的平均相对差异度小于5%,平均相对重叠度大于91%,验证了本文方法的可行性。

It proposed a new segmentation method of thyroid ultrasonic image based on T-Snake model. Firstly, a window-based anisotropic diffusion filter, combined with an adaptive weighted median filter, effectively eliminated speckle noise in thyroid ultrasonic images. Secondly, the method, based on the traditional T-Snake model and the adaptive region energy and expansion force, extracted the discontinuous boundary and weak boundary effectively, and realized the automatic segmentation of thyroid ultrasonic image. Finally, it set the model parameters and experimented with the clinical data. The results showed that the average relative difference is less than 5% and the average relative overlap is more than 91%. It verifies the feasibility of the proposed method.

周春瑜、程显毅

10.12074/201901.00142V1

医学研究方法基础医学临床医学

甲状腺超声波图像图像分割-Snake自适应加权中值滤波各向异性扩散滤波

周春瑜,程显毅.自适应滤波结合改进T-Snake模型的甲状腺超声图自动分割方法[EB/OL].(2019-01-28)[2025-08-22].https://chinaxiv.org/abs/201901.00142.点此复制

评论