|国家预印本平台
首页|基于BP网络的跳汰机松散度软测量建模及应用研究

基于BP网络的跳汰机松散度软测量建模及应用研究

Modeling and Research on Application of Jig Loose Layer of Soft-sensing Based on BP Neural Network

中文摘要英文摘要

床层松散度测量系统为复杂的非线性系统,用传统的数学方法很难解决。针对这一问题,本文利用BP神经网络具有的非线性动态处理能力,能够真实的反映各因素之间的非线性关系的特点,建立了跳汰机床层松散度软测量模型。将上升水流速度、整个床层紧密时的厚度、浮标跳动最大幅度、床层从上升开始到下降至紧密状态的时间作为网络输入,将床层松散度作为网络输出,通过对网络的不断训练与学习,归纳出输入与输出之间的内在关系。实验结果表明,本研究提出的BP神经网络模型,具有较强的动态逼近能力,对床层松散度的测量具有很高的研究价值。

In this paper,jig loose layer of soft measurement model for the application of research.This question would be a complicated nonlinear problem and could be difficultly solved with the conventional mathematical method.In view of such problem,the BP neural network method was applied to establish a soft-sensing mode of the jig loose layer for the nonlinear dynamic processing capacity and the ability of actually to state the nonlinear relationship between input and output.The variables of v0,h0,hm,T are used as the neural network input.P is taken as the neural network output.Through interactively train and study,the intrinsic relation between input and outputis drawn in the neural network. Experiment results show that the proposed method based on BP neural network has strong capability in dynamic approach and a high application value.

牛洪科、李建刚

选矿自动化技术、自动化技术设备计算技术、计算机技术

床层松散度BP网络跳汰机

mobility of bedBP neural networkjig

牛洪科,李建刚.基于BP网络的跳汰机松散度软测量建模及应用研究[EB/OL].(2011-01-06)[2025-08-06].http://www.paper.edu.cn/releasepaper/content/201101-287.点此复制

评论