基于实验修正的可预测GPU性能评估模型
he Predictable GPU Performance Evaluation Model Based on Experimental Correction
GPU强大的计算能力使得CUDA-GPU系统更多的应用于研究地质灾害的演变过程中,但是在利用离散元在模拟一些渐进变化的地质灾害的过程中涉及的计算规模比较大,输出步骤较多,程序运行时间过长。现有的性能评估模型无法对程序的运行时间作出精确地预测,而且在性能优化方面,必须在模拟过程结束后才能对系统性能进行评估,从而提出优化策略。本文提出了一种全新的性能评估模型,以程序访存时间和处理时间为基础,以少量的程序运行初期的过程为样本,进行分析加以修正,对后续的计算过程时间进行较为准确的预测,而且使我们在程序运行初期根据预测结果分析程序瓶颈,提出优化策略。?????
he great computing power of the GPU makes CUDA-GPU system applied widely in the study of the deological disasters. However, when we use the DEM to simulate the deological disasters with gradual changes, the large-scale computing and excessive output steps make the program runs too long time. Existing performance evaluation model can not predict the running time of the program precisely,whatsmore, in terms of performance optimization, they must valuate the performance of the system at the end of the simulation ,then propose the optimization strategy. This paper presents a new performance evaluation model which is based on the memory access time and processing time.The model use the early running of program as sample to analyze and fix the model,which can help the model to predict the running time of the program precisely.We can also use the model to locate the bottleneck of the program and propose the optimization strategy.
王明、王宇新
计算技术、计算机技术地质学
UDA-GPU离散元性能评估瓶颈
UDA-GPUDEMPerformance EvaluationBottleneck
王明,王宇新.基于实验修正的可预测GPU性能评估模型[EB/OL].(2014-05-13)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201405-184.点此复制
评论