|国家预印本平台
首页|图的邻和可区别染色

图的邻和可区别染色

Neighbor sum distinguishing colorings of graphs

中文摘要英文摘要

给定图~$G=(V, E)$,图~$G$ 的一个正常~$[k]$-边染色是一个映射~$phi: Eightarrow{1, 2, ldots, k}$, 使得~$E$ 中任意一对相邻的元素染不同的颜色。我们用~$f(v)$ 表示与点~$v$ 相关联的边的颜色的加和。图~$G$ 的一个正常~$[k]$-邻和可区别边染色是一个~$[k]$-边染色,使得对任意一条边~$uvin E(G)$,~$f(u) eq f(v)$。在图~$G$ 如上定义的染色中,我们将~$k$ 的最小值称作~$G$ 的邻和可区别边色数,记为~$chi^{'}_{sum}(G)$。相类似的,我们可以定义图 的~$[k]$- 邻和可区别全染色,并将邻和可区别全色数记为~$chi^{''}_{sum}(G)$。计算机技术的迅速发展,大力推动了图论染色问题发展。近年来,图的邻和可区别染色引起了学者们的广泛关注,本文主要介绍一下邻和可区别染色的一些进展和结论。

n edge~$[k]$-coloring of a graph~$G$ is an edge coloring of~$G$ by using the color set~$[k]={1,2,cdots,k}$. Let~$f(v)$ denote the sum of the colors of all incident edges of~$v$. An edge~$[k]$-neighbor sum distinguishing-coloring of~$G$ is anedge~$[k]$-coloring of~$G$ such that for each edge~$uvin E(G)$,~$f(u) eq f(v)$. In such a coloring, the smallest value~$k$ is called neighbor sum distinguishing edgechromatic number, denoted by~$chi^{'}_{sum}(G)$. Similarly, we can define total~$[k]$-neighbor sum distinguishing-coloring, and denote neighbor sum distinguishing totalchromatic number by~$chi^{''}_{sum}(G)$. The rapid development of computer technology vigorously promote the development of the coloring problem in graph theory.In recent years, neighbor sum distinguishing coloring attracted widespread attention, this article introduces some progress and conclusions about the neighbor sum distinguishing coloring.

李华龙、王光辉、丁来浩

数学

邻和可区别边染色邻和可区别全染色平面图

neighbor sum distinguishing edge coloring neighbor sum distinguishing total coloring planar graph

李华龙,王光辉,丁来浩.图的邻和可区别染色[EB/OL].(2014-01-02)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201401-98.点此复制

评论