Partial generalizations of some Conjectures in locally symmetric Lorentz spaces
Partial generalizations of some Conjectures in locally symmetric Lorentz spaces
这篇文章中,首先给出了局部对称Lorentz空间中线性 Weingarten类空超曲面的数量曲率和平均曲率的关系。进而,我们研究了局部对称Lorentz空间中满足一定曲率的完备或者紧致线性 Weingarten类空超曲面,通过修改Cheng-Yau的算子,给出了一些新的估计。最终,我们在局部对称Lorentz空间中给出了一些猜想的部分推广。
In this paper, first we give a notion for linear Weingarten spacelike hypersurfaces $M^{n}$with $R=aH+b_{1}$ in a locally symmetric Lorentz space $L_{1}^{n+1}$,where $R$ and $H$ are the normalized scalar curvature and the mean curvature of $M^{n}$, respectively.Furthermore, we study complete or compact linear Weingarten spacelike hypersurfacesin locally symmetric Lorentz spaces $L_{1}^{n+1}$ satisfying some curvature conditions.By modifying Cheng-Yau's operator $\square$ given in {\cite{ChengYau77}},we introduce a modified operator $L$ and give new estimates of $L(nH)$ and $\square(nH)$ ofsuch spacelike hypersurfaces.Finally, we give partial generalizations of some Conjectures in locally symmetric Lorentz spaces $L_{1}^{n+1}$.
数学物理学
线性Weingarten类空超曲面局部对称Lorentz空间数量曲率第二基本形
Linear Weingarten spacelike hypersurfacesLocally symmetric Lorentz spacesScalar curvatureSecond fundamental form
.Partial generalizations of some Conjectures in locally symmetric Lorentz spaces[EB/OL].(2017-11-23)[2025-08-02].https://chinaxiv.org/abs/201711.02631.点此复制
评论