|国家预印本平台
首页|Partial generalizations of some Conjectures in locally symmetric Lorentz spaces

Partial generalizations of some Conjectures in locally symmetric Lorentz spaces

Partial generalizations of some Conjectures in locally symmetric Lorentz spaces

中文摘要英文摘要

这篇文章中,首先给出了局部对称Lorentz空间中线性 Weingarten类空超曲面的数量曲率和平均曲率的关系。进而,我们研究了局部对称Lorentz空间中满足一定曲率的完备或者紧致线性 Weingarten类空超曲面,通过修改Cheng-Yau的算子,给出了一些新的估计。最终,我们在局部对称Lorentz空间中给出了一些猜想的部分推广。

In this paper, first we give a notion for linear Weingarten spacelike hypersurfaces $M^{n}$with $R=aH+b_{1}$ in a locally symmetric Lorentz space $L_{1}^{n+1}$,where $R$ and $H$ are the normalized scalar curvature and the mean curvature of $M^{n}$, respectively.Furthermore, we study complete or compact linear Weingarten spacelike hypersurfacesin locally symmetric Lorentz spaces $L_{1}^{n+1}$ satisfying some curvature conditions.By modifying Cheng-Yau's operator $\square$ given in {\cite{ChengYau77}},we introduce a modified operator $L$ and give new estimates of $L(nH)$ and $\square(nH)$ ofsuch spacelike hypersurfaces.Finally, we give partial generalizations of some Conjectures in locally symmetric Lorentz spaces $L_{1}^{n+1}$.

10.12074/201711.02631V1

数学物理学

线性Weingarten类空超曲面局部对称Lorentz空间数量曲率第二基本形

Linear Weingarten spacelike hypersurfacesLocally symmetric Lorentz spacesScalar curvatureSecond fundamental form

.Partial generalizations of some Conjectures in locally symmetric Lorentz spaces[EB/OL].(2017-11-23)[2025-08-02].https://chinaxiv.org/abs/201711.02631.点此复制

评论