基于核空间Fisher鉴别字典稀疏表示的图像分类
Image classification using sparse representation of Fisher discrimination dictionary in kernel space
基于稀疏编码的图像分类是取得了较好的分类效果。然而现有的方法在图像稀疏编码时,设计的是线性分类器。对于稀疏特征线性不可分的情况,这些方法的分类性能就会受到很大影响。为此,本文提出了一种基于核空间Fisher鉴别字 典稀疏编码的图像分类方法。该方法首先采用核方法将待训练的图像块映射到高维空间特征空间,然后在高维的特征空间进行稀疏编码,在编码过程中引入Fisher的鉴别准则。所提的方法不仅能提高字典的鉴别能力而且能够实现克服现有方法不能处理线性不可分的情况。实验结果证明了本文的有效性。
Sparse coding is popular for image classification and its performance is the state-of-the art. However, these methods design linear classifiers for the purpose of classifying when performing sparse coding. The performance of these methods will degrade if the features are linear inseparable. Thus, a novel image classification method is proposed in this paper. The proposed method is based on the sparse coding of Fisher discrimination dictionary in kernel space. First, the input image patches are mapped into high dimension feature space, and then, the sparse coding are performed in the feature space via introducing the Fisher discrimination criterion. The proposed method can not only improve the discriminative ability of spare dictionary but also overcome the shortcoming of existing methods which can not deal with the linear inseparable case. Experimental results verify the effectiveness of the proposed method.
赵里恒、唐英干
计算技术、计算机技术
图像分类稀疏编码Fisher核空间
Image classificationsparse codingFisherkernel space
赵里恒,唐英干.基于核空间Fisher鉴别字典稀疏表示的图像分类[EB/OL].(2016-05-27)[2025-08-17].http://www.paper.edu.cn/releasepaper/content/201605-1451.点此复制
评论