移动环境下基于情境感知的个性化影视推荐算法研究
针对在移动环境下使用传统推荐算法进行个性化影视推荐时存在的准确度不高的问题,提出了一种基于情境感知的矩阵分解算法。该算法在基本矩阵分解算法的基础上,通过融入全局偏置和情境偏置来进行未知评分预测。该算法的优势在于,一方面,使用矩阵分解的方式使得矩阵的规模远远小于原始评分矩阵;另一方面,该算法充分融入了情境要素对评分的影响,使得预测评分更加精准。通过在LDOS-CoMoDa数据集上进行实验,结果表明,该算法在准确度上优于基于用户的协同过滤算法、基本矩阵分解算法和Baseline预测算法。
iming at the problem of low accuracy in the use of traditional recommendation algorithm in mobile environment, a matrix factorization algorithm based on context-aware was proposed. Based on the basic matrix factorization algorithm, the algorithm performed unknown score prediction by incorporating global bias and context bias. The advantage of this algorithm is that, on the one hand, the matrix factorization was used to make the scale of the matrix much smaller than the original scoring matrix; on the other hand, the algorithm fully integrated the influence of the situational elements on the score, making the prediction score more accurate. Experiments on the LDOS-CoMoDa dataset show that the proposed algorithm outperforms the user-based collaborative filtering algorithm, the basic matrix factorization algorithm and Baseline prediction algorithm.
罗国前、刘志勇、何卓桁、张琳、张家鑫、张欣
计算技术、计算机技术通信无线通信
影视推荐矩阵分解情境感知
罗国前,刘志勇,何卓桁,张琳,张家鑫,张欣.移动环境下基于情境感知的个性化影视推荐算法研究[EB/OL].(2019-04-01)[2025-08-16].https://chinaxiv.org/abs/201904.00056.点此复制
评论