基于多任务学习的中文命名实体边界感知神经网络模型
Boundary-aware Neural Network Model for Chinese Named Entity RecognitionBased on Multitask Learning
中文命名实体识别是业界一直攻克的难点任务。为提高中文命名实体识别效果,本文提出了一种基于多任务学习的中文命名实体边界感知神经网络模型。本文将传统的命名实体识别任务分解为两个子任务:实体边界感知任务和实体类别分类任务。通过任务分解的方法,提高模型对中文命名实体边界识别的针对性。本文针对两个任务分别计算损失,同时结合实体特征和实体类别自然语言描述信息来提高实体分类的准确性。通过实验发现模型结果在多个数据集上有提高,并且在包括中文MSRA,OntoNotes 4.0,Resume和Weibo的数据集上达到了最新的性能,分别为+0.33,+1.12,+0.76,+2.83。该结果验证了本文模型的有效性,为中文命名实体识别任务提供了新思路。
Named entity recognition for Chinese corpus has been a great challenge. In order to improve the result of Chinese named entity recognition, this paper propose a boundary-aware neural model for Chinese named entity recognition based on multitask learning. In this paper, the traditional named entity recognition task is decomposed into two sub-tasks: entity boundary detection and entity category classification. Through the decompositionof task, the pertinence of the model for the boundary recognition of Chinese named entities is improved. The model calculates the loss separately, and uses the combination of entity features and entity category comprehensive expression information to improve the accuracy of entity classification. Through experiments, it is found that the model results have improved on multiple data sets, and active SOTA on the data sets including Chinese MSRA, OntoNotes 4.0, Resume and Weibo, which are +0.33, +1.12, +0.76, and +2.83. The results verify the effectiveness of the model in this paper and provide new ideas for the task of Chinese named entity recognition.
丁奕齐、闫丹凤
汉语
人工智能命名实体识别多任务学习边界感知神经网络
rtificial IntelligenceNamed Entity RecognitionMultitask LearningBoundary-awareNeural networks
丁奕齐,闫丹凤.基于多任务学习的中文命名实体边界感知神经网络模型[EB/OL].(2021-02-22)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/202102-50.点此复制
评论