|国家预印本平台
首页|基于特征权重优化的K-中心点聚类算法

基于特征权重优化的K-中心点聚类算法

K-Medoids Clustering Algorithm Based on Feature Weight Optimization

中文摘要英文摘要

为构造出更适合于混合属性数据点集空间的相异性度量,从而找到数据点集的更有意义的聚类分布,提出了基于特征权重优化的K-中心点聚类算法(算法1及算法1*)。接着对该聚类算法进行了必要的讨论,给出其时间复杂度及收敛性分析。为实现该聚类算法的特征权重优化步骤,给出了二种不同的特征权重优化方法(分别为算法2和算法3),并对它们进行了必要的讨论和分析。通过Iris和German数据集的几个对照实验,验证了该聚类算法经常能取得更好的聚类精度,从而说明该聚类算法具有一定的有效性。最后给出了几点研究展望,为下一步的研究指明了方向。

It gives a kind of K-medoids clustering algorithm based on feature weight optimization(KMCAFW), described by algorithm 1 and algorithm 1*, in order to find more meaningful clustering distributions by searching a better dissimilarity measure in hybrid attributes data space. After some necessary discuss, it lists its time complexity and astringency analysis. In order to implement the feature weighting part in this new clustering algorithm, it gives two different methods optimizing feature weight, described by algorithm 2 and algorithm 3 each. It validates the new clustering algorithm can often get a better clustering quality by two control experiments using Iris and German data sets. At last, it indicates several valuable research expectations.

陈新泉

计算技术、计算机技术

特征权重优化K-中心点聚类有序属性无序属性混合属性

K-Medoids ClusteringFeature Weight OptimizationOrdered AttributesSorted AttributesHybrid Attributes

陈新泉.基于特征权重优化的K-中心点聚类算法[EB/OL].(2009-05-06)[2025-07-02].http://www.paper.edu.cn/releasepaper/content/200905-127.点此复制

评论