|国家预印本平台
首页|一类指数型差分方程的动力学行为

一类指数型差分方程的动力学行为

ynamics of an exponential type system of difference equations

中文摘要英文摘要

差分方程模型是描述客观世界中随离散时间演化规律的重要工具,而基于指数的递推关系的指数型差分方程在种群生态学中有着深刻的应用背景和潜在的实用价值。本文在前人研究工作的基础上对一类著名的单种群生物模型进行推广,通过对方程中的参数个数进行拓展,将单个方程拓展为一类相互作用且具有指数型自我调节功能的两种群生物模型,首次提出并研究一类新的指数型差分方程系统,取得该系统的正解的有界持久性和收敛性、正平衡点的存在唯一性和全局渐近稳定性等若干创新性成果。

ifference equations are key tools to describe the evolution of certain phenomena over the course of discrete time, and difference equations and systems of difference equations containing exponential terms have numerous potential applications in biology. In this paper, based on previous work, we extend a famous discrete epidemic model to a system of difference equations containing exponential terms, which models a two-species population that includes a self-regulating mechanism that limits the sizes of both populations. We investigate the boundedness, persistence and convergence of the positive solutions, the existence and the global asymptotic stability of a unique positive equilibrium of the systems of two difference equations.

韦志坚、贾露露

数学生物科学理论、生物科学方法

差分方程平衡点有界性持久性稳定性

ifference equationequilibriumboundednesspersistencestability

韦志坚,贾露露.一类指数型差分方程的动力学行为[EB/OL].(2019-05-24)[2025-08-17].http://www.paper.edu.cn/releasepaper/content/201905-251.点此复制

评论