|国家预印本平台
首页|动态融合个性化表示和查询序列编码的个性化搜索方法

动态融合个性化表示和查询序列编码的个性化搜索方法

Personalized Search Based on Dynamic Fusion of Personalized Representation and Query Sequence Encoding

中文摘要英文摘要

个性化搜索是提高信息检索水平、提高用户搜索体验的重要手段,在工业领域和学术领域都得到了广泛关注。通过对个性化搜索任务及个性化搜索数据集的分析,总结了个性化搜索的两大难点:模糊查询具有歧义性和用户重查询行为难以识别。本文针对个性化搜索任务的两个难点,提出了动态融合个性化表示和查询序列编码的个性化搜索方法(PRQSE),使用融合知识表示学习的查询单元对查询进行个性化表示,解决模糊查询歧义性问题,使用循环神经网络及双层注意力机制编码用户查询序列,捕捉用户的重查询行为,学习更加准确的用户兴趣特征。对比实验结果表明,PRQSE模型较其他方法在MRR上提升0.9%-29%,在P@1上提升2.2%-61.7%。消融实验结果验证了个性化表示及查询序列编码的有效性。?????

Personalized search is an important mean to improve information retrieval and enhance user search experience, and has been widely concerned in the industrial and academic fields. Based on the analysis of personalized search task and personalized search dataset, two difficulties of personalized search are summarized: query ambiguity and re-finding behaviors. In this paper, we propose personalized search based on dynamic fusion of personalized representation and query sequence encoding (PRQSE) to address two difficulties of personalized search task. Personalized representation of queries using query units fused with knowledge representation learning to solve the problem of query ambiguity. Encoding user query sequences using recurrent neural networks and a two-layer attention mechanism to capture re-finding behaviors and learn more accurate user interest features. The results of the comparison experiments show that the PRQSE model improves 0.9%-29% in MRR and 2.2%-61.7% in MAP compared with other methods. The effectiveness of personalized representation and query sequence encoding was verified by ablation experiments.

郭倩、陈炜、万怀宇

计算技术、计算机技术

个性化搜索知识表示学习注意力机制循环神经网络

Personalized SearchKnowledge Representation Learningttention MechanismRecurrent Neural Network

郭倩,陈炜,万怀宇.动态融合个性化表示和查询序列编码的个性化搜索方法[EB/OL].(2021-05-11)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/202105-41.点此复制

评论