|国家预印本平台
首页|基于强化学习的 SDN 路由规划算法的实现

基于强化学习的 SDN 路由规划算法的实现

Implementation of the SDN Routing Planning algorithm based on reinforcement learning

中文摘要英文摘要

传统的路由协议使用有限的信息来做出路由决策,这可能会导致对流量可变性的缓慢适应,以及对应用程序的服务质量(QoS)需求的有限支持。软件定义网络(Software Defined Networking,SDN)的相关研究为智能路由算法提供了部署的可能,使得路由层可以完成更多、更复杂的任务。虽然SDN的集中式控制为实现集中式网络优化提供了一个控制框架,但自适应不同流量负载的路由算法实现需要复杂的模型,因此如何在SDN网络架构中通过合理的流调度算法实现负载均衡,提高应用程序的服务质量依旧处于比较初步的阶段。近些年来,基于强化学习的人工智能技术已成功应用到广泛的复杂控制和优化问题,特别是经典的表格强化学习,也称为Q-learning,该学习方法的逐渐完善为强化学习技术应用到路由领域提供了技术上的基础。结合两者的优势,本文提出一种基于强化学习的SDN路由规划方法(Q-SDN),该方法通过实验验证发现它的自适应能力更好,且能满足多样化的性能评价指标优化需求。?

raditional routing protocols use limited information to make routing decisions, which can lead to slow adaptation to traffic variability and limited support for quality of service (QoS) requirements for applications. The related research of Software Defined Networking (SDN) provides the possible deployment of intelligent routing algorithms, allowing the routing layer to complete more and more complex tasks.Although the centralized control of SDN provides a control framework for realizing centralized network optimization, the adaptive routing algorithm of different traffic loads requires a complex model, so how to realize load balancing in SDN network architecture through reasonable flow scheduling algorithm, improve the service quality of the application is still in a preliminary stage. In recent years, the artificial intelligence technology based on reinforcement learning has been successfully applied to a wide range of complex control and optimization problems, especially the classic tabular reinforcement learning, also known as Q-learning. The gradual improvement of this learning method has provided a technical basis for the application of reinforcement learning technology to the routing field. Combined with the advantages of both, this paper proposes a SDN routing planning method (Q-SDN) based on reinforcement learning, which is found to have better adaptive ability and can meet the diversified optimization needs of various performance evaluation indicators.

诸葛斌、刘广强、吴莎尘

计算技术、计算机技术自动化技术、自动化技术设备

软件定义网络路由规划强化学习

Software-Defined NetworkRouting PlanningReinforcement Learning.

诸葛斌,刘广强,吴莎尘.基于强化学习的 SDN 路由规划算法的实现[EB/OL].(2022-12-07)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/202212-25.点此复制

评论