|国家预印本平台
首页|基于储备池计算的大采样间隔混沌系统的学习与预测

基于储备池计算的大采样间隔混沌系统的学习与预测

Large sampling intervals for learning and predicting chaotic systems with reservoir computing

中文摘要英文摘要

储备池计算是一种训练成本低、硬件开销小的高效人工神经网络。它广泛应用于时间序列信息处理,如波形分类、语音识别、时间序列预测等。但在实际应用中,研究人员只能利用来自系统的有限信息进行预测,并且由于实际系统的限制,采样间隔不能自由调整。基于上述情况,论证了时间和空间采样间隔对储备池计算的短期和长期预测能力的影响,并与现有数值方法进行了比较。研究发现,对于混沌系统,与经典数值方法(如四阶龙格-库塔方法和谱方法)相比,储备池计算可以在几乎大5倍的时空间隔内学习和再现系统状态。研究结果揭示了储备池计算在时空区间限制下的局限性,为基于储备池的快速数值模拟方法的发展奠定了基础。

Reservoir computing is an efficient artificial neural network with low training cost and low hardware overhead. It is widely used in time sequence information processing, such as waveform classification, speech recognition, time series prediction, etc. However, in practical applications, researchers can only use limited information from the system for predictions, and the sampling interval cannot be adjusted freely due to the limitations of the actual system. Based on the above situation, we demonstrate the impact of time and space sampling intervals on the short-term and long-term prediction capabilities of the reservoir computing and compare it with the existing numerical methods. It can be found that for chaotic systems, the reservoir computing can learn and reproduce the systems' states at almost five times larger spatio-temporal intervals compared to classical numerical methods, such as fourth-order Runge-Kutta and spectral methods. Our results show the captivity of reservoir computing in the applications with limitation of spatio-temporal intervals, and pave the way to reservoir-based fast numerical simulation methods.

颜子翔、赵慧、肖井华、赵慧、谢清妍、高健

计算技术、计算机技术自动化基础理论

机器学习储备池计算采样间隔

Machine learning Reservoir computing Sample interval

颜子翔,赵慧,肖井华,赵慧,谢清妍,高健.基于储备池计算的大采样间隔混沌系统的学习与预测[EB/OL].(2024-03-20)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/202403-252.点此复制

评论