|国家预印本平台
首页|机器人自动设计初探讨:基于黑盒函数优化实现

机器人自动设计初探讨:基于黑盒函数优化实现

owards automatic robot design: a black-box function optimization approach

中文摘要英文摘要

机器人具有极大降低劳动体力需求的潜力,是目前研究热点之一。机器人设计是智力劳动密集型工业,因此机器人的自动设计方法研究具有重要的现实意义。由于现有研究中鲜有自动设计的研究,本文探讨自动设计的基本框架。将机器人设计抽象为黑盒参数优化的过程,通过物理模拟对一个特定的机器人设计进行评分,确定此次设计完成给定任务的能力。通过更改设计参数,进行完成任务能力的优化。即自动设计方法的输入是一组零件,一个需要机器人完成的任务以及一个一般是基于强化学习的机器人控制训练方法,输出是这一组零件的组合方式。由于物理模拟,或真实的实验验证在时间和劳动成本上较为昂贵,因此黑盒优化的过程须尽可能降低采样次数。本文采用贝叶斯参数优化完成设计任务。实验表明,所提出的方法可以在5次左右的模拟中完成一个两关节机器人自动设计任务。

Robotics is a research topic among the most funded around the world and robots have the potential to largely reduce human labors. The design of robots is, on the other hand mental labor intensive. It is surprising that automatic robot design, as an important research topic, remains unexplored till today. In this paper, a automatic design framework is proposed, where the robotics design problem is model as a black-box function optimization process. Given robots parts and a specific purpose that the robot is designed to accomplish, the framework tries to auto-assemble the parts in a way that is best for the purpose. The framework is a simulation and optimization interactive process, where a physics engine or even real world simulations are employed to score a assembling setting according to its capability to accomplished the given task, and a black-box optimization method is employed to optimize the score. Bayesian hyper-parameter optimization is used to carry out the optimizations, for its advantage of requiring less sampling than other methods. Experiments show that the proposed method is able to find acceptable designs of a two joint system within only 5 simulations.

10.12074/201905.00052V1

自动化技术、自动化技术设备自动化基础理论计算技术、计算机技术

机器人自动设计贝叶斯优化

roboticsutomatic designBayesian optimization

.机器人自动设计初探讨:基于黑盒函数优化实现[EB/OL].(2019-05-05)[2025-08-02].https://chinaxiv.org/abs/201905.00052.点此复制

评论