|国家预印本平台
首页|基于多变量提升度量在Apriori算法中的研究与应用

基于多变量提升度量在Apriori算法中的研究与应用

he research and application about Multivariable Lift Measure in Apriori algorithm

中文摘要英文摘要

关联规则挖掘是数据挖掘的一个重要研究方向。传统关联规则使用支持度-置信度框架来进行数据挖掘,所得到的规则并不一定全都是用户感兴趣的,有些甚至是误导的。本文改进了传统的基于支持度-置信度框架的关联规则,引入了相关度量—提升度,并将提升度由二元变量扩展至多元变量使其更加适合于大型数据库。实验结果表明,使用提升度框架进行关联规则挖掘,获得的规则数量少,能够挖掘出支持度-置信度框架下遗漏的许多有用规则,实用价值高,无错误规则,是一种比较理想的关联规则挖掘模式。

Mining of association rules is an important research topic among the various data mining problems. However the common approaches based on support-confidence frame work maybe get a great number of redundant and wrong association rules. In order to solve the problems, an upgrade measure is defined and added to the mining algorithm for association rules. The lifting measure of the binary variables is extended to that of multiple variables,such that it is more suitable for large databases. The experimental result shows that introducing lift measure based on common approach to association rules mining can reduce the useless association rules, and mine a lot of interesting association rules. It is a more ideal model mining association rules.

王强德、高乾、吕成兴

计算技术、计算机技术

数据挖掘,关联规则,提升度,多元变量

ata mining,Association rules,lift measure,Multiple variables

王强德,高乾,吕成兴.基于多变量提升度量在Apriori算法中的研究与应用[EB/OL].(2007-10-25)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/200710-450.点此复制

评论