基于用户潜在兴趣的知识感知传播推荐算法
知识图谱引入推荐系统可以利用知识图谱实体之间的语义关系学习用户及项目表示。基于嵌入传播的方法利用知识图谱的图结构学习相关特征,但随着传播范围增加,多跳实体间的语义相关性减小。为有效提升推荐语义表达能力并提高推荐准确度,文章提出基于用户潜在兴趣的知识感知传播推荐模型,该模型采用异构传播方式传播项目关联知识并迭代学习用户的潜在兴趣,以此增强模型对用户与项目的表示能力。具体的,首先图嵌入层生成用户与项目的初始化表示,随后在异构传播层中采用知识感知注意力机制区分同一层中实体之间的重要性,更精确的生成目标实体的表示。随后通过用户潜在兴趣传播学习用户的高阶潜在兴趣,增强多跳实体语义相关性。最后在预测层中使用信息衰减因子区分不同传播层次的重要性,生成用户及项目的最终表示。实验表明,该模型在Last。FM与Book-Crossing两个公开数据集上AUC值相较于最先进的基线提升了2.25%与4.71%,F1值分别提升3.05%和1.20%,Recall@K值均优于对比的基线模型,文章提出的模型能有效提高推荐准确度。
pplying knowledge graph to recommendation system can make use of semantic relations between entities of knowledge graph to learn user and item representation. The embedding propagation method uses the graph structure of the knowledge graph to learn relevant features, but the semantic dependency between multi-hop entities decreases as the propagation range increases. In order to effectively improve the semantic expression ability of recommendation and improve the accuracy of recommendation, this paper proposes a knowledge-aware propagation recommendation algorithm based on users' potential interests. The model adopts heterogeneous propagation method to disseminate item relevant knowledge and iteratively learn users' potential interests, so as to enhance the representation ability of the model to users and items. Specifically, first, graph embedding layer generate initialize representation of users and items, and in the heterogeneous propagation layer, the knowledge-aware attention mechanism can distinguish the importance of entities in the same layer, so the model can generate the representation of target entities more accurately. Then the user's potential interest propagation can effectively learn the user's higher-order potential interest and enhance the semantic relevance of multi-hop entities. Finally, information decay factor is used in the prediction layer to distinguish the importance of different communication levels and generate the final representation of users and items. Experiments show that the AUC value of the model on the Last. FM and Book-Crossing increases by 2.25% and 4.71% compared with the most advanced baseline, and the F1 value increases by 3.05% and 1.20% respectively, and the Recall@K value is superior to the comparison baseline model. The proposed model can effectively improve the accuracy of recommendation.
肖栩豪、张金金、张波、赵鹏、曾昭菊
计算技术、计算机技术
推荐系统知识图谱注意力机制异构传播
肖栩豪,张金金,张波,赵鹏,曾昭菊.基于用户潜在兴趣的知识感知传播推荐算法[EB/OL].(2022-05-10)[2025-08-10].https://chinaxiv.org/abs/202205.00078.点此复制
评论