|国家预印本平台
首页|基于差分进化的在线极限学习机

基于差分进化的在线极限学习机

Online sequential extreme learning machine based on the differential evolution

中文摘要英文摘要

在线极限学习机(OS-ELM)是一种在线学习算法,它可以逐个或者逐段地学习数据,并且OS-ELM比一般的在线学习算法学习速度要快。为进一步提高OS-ELM的泛化性能,提出一种基于差分进化的在线极限学习机 (DEOS-ELM):利用差分进化算法的全局寻优能力,将OS-ELM的连接权值和阈值进行合理编码,作为差分进化算法的适应度指标进行训练,获得最优网络,根据优化后的OS-ELM对新数据进行预测。实验结果表明,与普通的OS-ELM相比,DEOS-ELM具有更好的泛化性能,并且其稳健性也得到加强。

Online sequential extreme learning machine (OS-ELM) is an online sequential learning algorithm, which can learn data one-by-one or chunk-by-chunk. It has been shown that OS-ELM runs much faster than other popular sequential learning algorithms. In order to improve the generalization performance of OS-ELM,we propose online sequential extreme learning machine based on the differential evolution(DEOS-ELM): firstly encode the connection weights and thresholds as the fitness index of differential evolution to get the optimal structure using differential evolution algorithm global optimization ability, then predict the new data with the OS-ELM network optimized. The results show that the DEOS-ELM has better generalization performance and stability than the original OS-ELM.

王建功

计算技术、计算机技术

自动控制理论差分进化在线极限学习机泛化性能稳健性

automatic control theorydifferential evolutiononline sequential extreme learning machinegeneralization performancestability

王建功.基于差分进化的在线极限学习机[EB/OL].(2010-05-26)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201005-668.点此复制

评论