极混合投影体的~Orlicz~对偶~Brunn-Minkowski~不等式
he Dual Orlicz Brunn-Minkowski Inequality for the Polars of Mixed Projection Bodies
本文利用均质积分型的~Brunn-Minkowski~不等式以及一些经典的不等式证明了极混合投影体的对偶~Brunn-Minkowski~不等式, 然后通过对~$\tilde{W}_{n-j}(\varPi^\ast_iK)$~变分、定义~Borel~概率测度~$\frac{\rho(\varPi^\ast_iK,u)^{j}}{nQ_{ji}(K)}{d}S(u)$~以及放缩等方法得到了极混合投影体的~Orlicz~对偶~Brunn-Minkowski~不等式.
In this paper, the dual Brunn-Minkowski inequality for the polars of the mixed projection bodies is proved by using the quermassintegral Brunn-Minkowski inequality and some classical inequalities. The Orlicz dual Brunn-Minkowski inequality for the polars of the mixed projection bodies is obtained by the $\tilde{W}_{n-j}(varPi^ast_iK)$ variation, the definition of the Borel probability measure $\frac{\rho(\varPi^\ast_iK,u)^{j}}{nQ_{ji}(K)}{d}S(u)$, the scaling and other methods.
徐文学、官晏莉
数学
Brunn-Minkowski~不等式Orlicz~和极混合投影体对偶均质积分
Brunn-Minkowski inequalityOrlicz sumpolars of mixed projection bodiesdual quermassintegral
徐文学,官晏莉.极混合投影体的~Orlicz~对偶~Brunn-Minkowski~不等式[EB/OL].(2024-04-09)[2025-05-16].http://www.paper.edu.cn/releasepaper/content/202404-157.点此复制
评论