|国家预印本平台
首页|The Erd\H{o}s-S\'os Conjecture for Geometric Graphs

The Erd\H{o}s-S\'os Conjecture for Geometric Graphs

The Erd\H{o}s-S\'os Conjecture for Geometric Graphs

来源:Arxiv_logoArxiv
英文摘要

Let $f(n,k)$ be the minimum number of edges that must be removed from some complete geometric graph $G$ on $n$ points, so that there exists a tree on $k$ vertices that is no longer a planar subgraph of $G$. In this paper we show that $(1/2)\frac{n^2}{k-1}-\frac{n}{2}\le f(n,k) \le 2 \frac{n(n-2)}{k-2}$. For the case when $k=n$, we show that $2 \le f(n,n) \le 3$. For the case when $k=n$ and $G$ is a geometric graph on a set of points in convex position, we show that at least three edges must be removed.

Jes¨2s Lea?os、Cynthia Rodr¨aguez、Ruy Fabila-Monroy、Gelasio Salazar、Luis F. Barba、Francisco Zaragoza、Dolores Lara

数学

Jes¨2s Lea?os,Cynthia Rodr¨aguez,Ruy Fabila-Monroy,Gelasio Salazar,Luis F. Barba,Francisco Zaragoza,Dolores Lara.The Erd\H{o}s-S\'os Conjecture for Geometric Graphs[EB/OL].(2012-07-05)[2025-06-15].https://arxiv.org/abs/1207.1500.点此复制

评论