|国家预印本平台
首页|通过聚合事件元素信息的篇章级事件抽取

通过聚合事件元素信息的篇章级事件抽取

ocument-level Event Extraction via Aggregate Argument Information Model

中文摘要英文摘要

当前金融领域的文本数据量庞大,快速提取文本中的事件相关信息有助于人们快速掌握金融活动概况。目前更多的金融文本数据是以长篇幅文本形式来呈现,传统的句子级事件抽取方法在篇章级金融文本上的表现较差。基于此情况,近些年有不少应用于金融文本的篇章级事件抽取的相关研究工作出现。篇章级事件抽取的目的是从文档中抽取出结构化且完整的篇章级事件信息,主要提供的是句子级事件抽取方法所缺乏的解决事件元素分散和多事件问题的能力。本文针对前述问题提出了聚合事件元素信息的篇章级事件抽取模型,该方法可以将长文本的信息融合编码进行事件元素抽取,并且构建了实体间依赖信息用于篇章级文本编码。在公开数据集ChFinAnn的实验上表明,本文提出的模型F1值达到了78.3%。

he current financial field has a large amount of text data, and quickly extracting event related information from the text can help people quickly grasp the overview of financial activities. Currently, more financial text data is presented in the form of long text, and traditional sentence level event extraction methods perform poorly on discourse level financial texts. Based on this situation, there have been many research works on text level event extraction applied to financial texts in recent years. The purpose of text level event extraction is to extract structured and complete text level event information from documents, mainly providing the ability to solve the problem of scattered event elements and multiple events that sentence level event extraction methods lack. This article proposes a discourse level event extraction model that aggregates event element information to address the aforementioned issues. This method can fuse and encode the information of long texts for event element extraction, and construct inter entity dependency information for discourse level text encoding. The experimental results on the publicdataset ChFinAnn show that the F1 value of the model proposed in this paper reaches 78.3%.

汪鹏、李蕾

财政、金融

智能科学与技术篇章级事件抽取事件元素抽取

Intelligent Science and Technologydocument-level event extractionevent argument extraction

汪鹏,李蕾.通过聚合事件元素信息的篇章级事件抽取[EB/OL].(2023-05-04)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/202305-2.点此复制

评论