P-SANet:一种高精度实时点云语义分割框架
P-SANET: A HIGH-PRECISION REALTIME POINT CLOUD SEMANTIC SEGMENTATION FRAMEWORK
自动驾驶系统中的感知是指导决策执行的重要任务。激光雷达点云是一种完成感知任务的数据集,其原始信息丰富,易于采集,便于存储。与相机图像相比,点云包含精确的空间信息并适应各种环境,但是,更多的信息意味着更多的计算能力消耗。处理速度和准确性是神经网络框架的两个关键指标。传统方法不得不为提高处理速度而付出降低精度的代价。虽然一些框架将点云预处理为投影图像,但在传统的 2D 卷积操作中,2D 图像张量也包含大量冗余的通道特征。在这篇论文中,我们提出了一个点云语义分割框架,我们用一个新的子模块替换了标准的卷积层,大大减少了计算量,此外,我们引入了一个子模块来融合坐标自然值和中间张量。本文的框架分为三部分:球面投影预处理模块、En-Decoder模块和数据后处理模块。我们使用 SemanticKITTI 数据集进行实验,结果表明我们的框架在预测精度和预测速度上都优于其他框架。我们还使用稀疏点云数据集来测试我们框架的泛化能力,实验表明它的性能优于其他框架。 代码已开源于:https://github.com/windtries/P-SANet
Perception in autonomous system is an important task to guide decision execu-tion. Lidar point cloud is a type of dataset to complete perception task, it is rich in original information, easy to collect, and convenient to store. Compared to camera image, point cloud contains precise spatial information and adapts to various en-vironments, nevertheless, more information means more computing power con-sumption. The processing speed and accuracy are two key metrics of neural net-work framework. The traditional methods have to pay the price of reducing accu-racy for increasing processing speed. Though some frameworks preprocess point cloud into projected image, the 2D image tensor also contains a large number of redundant channel features in the traditional 2Dconvolution operation. In this pa-per, we propose a point clouds semantic segmentation framework, we replace the standard convolutional layer with a new sub-module, and it greatly reduces the amount of computation, besides, we introduce a sub-module to fuse the coordi-nate values and middle tensors. The framework in this paper is divided into three parts: spherical projection preprocessing module, En-Decoder module and data post-processing module. We use the SemanticKITTI dataset to conduct experi-ments, and the results show that our framework outperforms other frameworks both in prediction accuracy and prediction speed. We also use sparse point cloud dataset to test the generalization of our framework, and the experiments show that it performs better than other frameworks. Code is available at: https://github.com/windtries/P-SANet
苟小峰、张诚恺、焦继超
自动化技术、自动化技术设备计算技术、计算机技术
计算机视觉点云分割注意力机制图像处理自动驾驶
computer visionpoint cloud segmentationattention mechanismimage processingautonomous driving
苟小峰,张诚恺,焦继超.P-SANet:一种高精度实时点云语义分割框架[EB/OL].(2022-01-17)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202201-49.点此复制
评论