|国家预印本平台
首页|Further development of positive semidefinite solutions of the operator equation $\sum_{j=1}^{n}A^{n-j}XA^{j-1}=B$

Further development of positive semidefinite solutions of the operator equation $\sum_{j=1}^{n}A^{n-j}XA^{j-1}=B$

Further development of positive semidefinite solutions of the operator equation $\sum_{j=1}^{n}A^{n-j}XA^{j-1}=B$

来源:Arxiv_logoArxiv
英文摘要

In \cite{Positive semidefinite solutions}, T. Furuta discusses the existence of positive semidefinite solutions of the operator equation $\sum_{j=1}^{n}A^{n-j}XA^{j-1}=B$. In this paper, we shall apply Grand Furuta inequality to study the operator equation. A generalized special type of $B$ is obtained due to \cite{Positive semidefinite solutions}.

Zongsheng Gao、Jian Shi

数学

Zongsheng Gao,Jian Shi.Further development of positive semidefinite solutions of the operator equation $\sum_{j=1}^{n}A^{n-j}XA^{j-1}=B$[EB/OL].(2011-09-02)[2025-06-15].https://arxiv.org/abs/1109.0450.点此复制

评论