元搜索引擎中个性化搜索研究
Personalized search research in Meta Search Engine
搜索引擎是使用关键字进行查询的,然而用户输入的关键字并不能完全代表用户的检索需求,不同的用户,因其专业背景、兴趣爱好的不同,在输入相同关键字的同时,往往隐藏了其潜在的搜索需求。然而传统的搜索引擎是没办法识别用户的潜在搜索需求的。基于以上问题,本文对用户的个性化搜索需求进行了研究。本文引入了用户兴趣模型,这种改进的基于向量空间模型的用户兴趣模型不仅能反映用户的主要兴趣,而且能反映用户的近期兴趣。在对搜索结果进行筛选和排序时,通过计算用户兴趣与Web页面的相关度,对各个独立搜索引擎的返回结果进行重新组织,从而实现了用户的个性化搜索需求。
Search Engine is based on key words. Generally speaking, the key words users type in do not actually show what they want. Different users have different majors and interests. There are always potential thoughts when they type in the key words, but traditional Search Engine does not know their potential thoughts. In order to solve this problem, the thesis does some research on personalized search. The thesis adds in user interest model, which is based on vector space model. It not only shows user’s main interests, but also shows users recent interests. It calculates relativity between web page and user interests, so that search results of independent Search Engines can be resorted, in this way personalized search can be realized.
张志亮
计算技术、计算机技术
元搜索引擎个性化用户兴趣模型
Meta Search EnginePersonalizedUser interest model
张志亮.元搜索引擎中个性化搜索研究[EB/OL].(2009-04-10)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200904-314.点此复制
评论